Multipartite graph - space graph Ramsey numbers

نویسندگان

  • Paul Erdös
  • Ralph J. Faudree
  • Cecil C. Rousseau
  • Richard H. Schelp
چکیده

The Ramsey number r(F, G) is the least number N such that in every two-coloring (R, B)=(red, blue) of the edges of KN , either there is a red copy of F or else a blue copy of G . The inequality (1) holds in view of the fact that the edges of the complete graph of order (m-1) (n-1) +s-1 can be given the coloring in which the blue graph, denoted (B), is isomorphic to (m-1)K„_~UKS_~ . Then the red graph, denoted (R), does not contain F since ~R) has chromatic number m but the smallest color class has s-1 vertices . Likewise, (B) does not contain G since no component of (B) has more than n-1 vertices. A natural line of inquiry asks for the determination of those cases for which (1) holds with equality . The classical result of this type is the simple theorem of Chvátal [4], namely r(K,,,, T)=(m-1) (n -1)+ for every tree T of order n . Many other examples of equality in (l) can be found when one assumes that G is sufficiently sparse . Previous results of this type can be found in [2], [3] and {5j. The present paper concerns the case in which Fis a multipartite graph. Our notalion for an m-partite graph with parts of size p,,, p, . . ., p will be K(p,, . . . I p,,,) . In case the parts are all of equal size p, we shall write K(p, . . ., p) . The floor of x (greatest integer --x) and the ceiling of x (least integer -x) will be denoted [xl and [x], respectively. A path which is a subgraph of G is a suspended path of G if each vertex of the path, except for its endvertices, has degree 2 in G . Throughout F and G will have no isolates . ComBINAToRicA 5 (4) (1985') 311-318

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ramsey numbers in complete balanced multipartite graphs. Part II: Size numbers

The notion of a graph theoretic Ramsey number is generalised by assuming that both the original graph whose edges are arbitrarily bi–coloured and the sought after monochromatic subgraphs are complete, balanced, multipartite graphs, instead of complete graphs as in the classical definition. We previously confined our attention to diagonal multipartite Ramsey numbers. In this paper the definition...

متن کامل

Ramsey numbers in complete balanced multipartite graphs. Part I: Set numbers

The notion of a graph theoretic Ramsey number is generalised by assuming that both the original graph whose edges are arbitrarily bi–coloured and the sought after monochromatic subgraphs are complete, balanced, multipartite graphs, instead of complete graphs as in the classical definition. We previously confined our attention to diagonal multipartite Ramsey numbers. In this paper the definition...

متن کامل

Size Multipartite Ramsey Numbers for Small Paths Versus Stripes

For graphs G and H, the size balanced multipartite Ramsey number ) , ( H G m j is defined as the smallest positive integer s such that any arbitrary two red/blue coloring of the graph s j K × forces the appearance of a red G or a blue H . In this paper we find the exact values of the multipartite Ramsey numbers ) , ( 2 3 nK P m j and ) , ( 2 4 nK P m j .

متن کامل

A multipartite Ramsey number for odd cycles

In this paper we study multipartite Ramsey numbers for odd cycles. Our main result is the proof of a conjecture of Gyárfás, Sárközy and Schelp [12]. Precisely, let n ≥ 5 be an arbitrary positive odd integer; then in any two-coloring of the edges of the complete 5-partite graph K(n−1)/2,(n−1)/2,(n−1)/2,(n−1)/2,1 there is a monochromatic cycle of length n. keywords: cycles, Ramsey number, Regular...

متن کامل

On size multipartite Ramsey numbers for stars versus paths and cycles

Let Kl×t be a complete, balanced, multipartite graph consisting of l partite sets and t vertices in each partite set. For given two graphs G1 and G2, and integer j ≥ 2, the size multipartite Ramsey number mj(G1, G2) is the smallest integer t such that every factorization of the graph Kj×t := F1 ⊕ F2 satisfies the following condition: either F1 contains G1 or F2 contains G2. In 2007, Syafrizal e...

متن کامل

Multipartite Ramsey numbers for odd cycles

In this paper we study multipartite Ramsey numbers for odd cycles. We formulate the following conjecture: Let n ≥ 5 be an arbitrary positive odd integer; then, in any two-coloring of the edges of the complete 5-partite graph K((n − 1)/2, (n − 1)/2, (n − 1)/2, (n − 1)/2, 1) there is a monochromatic Cn, ∗2000 Mathematics Subject Classification: 05C55, 05C38. †Research supported in part by the Nat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Combinatorica

دوره 5  شماره 

صفحات  -

تاریخ انتشار 1985